[翻译]理解python中的装饰器
有人翻译过了,很多转载,暂时没找到原文,各个地方的排版不一样,排版(代码格式),代码注解等都不怎么好
练练手,顺手一翻吧,权当加深理解
来源stackoverflow上的问题 链接
很长哦(应该是巨长…分了三次搞完),要有耐心看完
python的函数是对象
要理解装饰器,首先,你必须明白,在python中,函数是对象. 这很重要.
简单例子来理解为什么
def shout(word="yes"):
return word.capitalize()+"!"
print shout()
# outputs : 'Yes!'
# 作为一个对象,你可以讲函数赋值给另一个对象
scream = shout
# 注意到这里我们并没有使用括号:我们不是调用函数,而是将函数'shout'赋给变量'scream'
# 这意味着,你可以通过'scream'调用'shout'
print scream()
# outputs : 'Yes!'
# 不仅如此,你可以删除老的名称'shout',但是通过'scream'依旧可以访问原有函数
del shout
try:
print shout()
except NameError, e:
print e
#outputs: "name 'shout' is not defined"
print scream()
# outputs: 'Yes!'
好了,记住这点,我们将会很快用到它.
Python函数另一个有趣的特性是,函数可以被定义在另一个函数里面
def talk():
# 你可以定义一个函数
def whisper(word="yes"):
return word.lower()+"..."
# ... 并且立刻调用
print whisper()
# 每次当你调用"talk", 都会定义"whisper"
# 并且在"talk"中被调用
talk()
# outputs:
# "yes..."
#但是在"talk"外部,函数"whisper"不存在!
try:
print whisper()
except NameError, e:
print e
#outputs : "name 'whisper' is not defined"*
函数引用
好了,到这里了,接下来是有意思的部分,我们刚才看到 函数是对象,然后:
1.函数可以赋值给一个变量
2.函数可以定义在另一个函数内部
即,这也意味着一个函数可以返回另一个函数:-),让我们来看另一段代码
def getTalk(type="shout"):
# 定义函数
def shout(word="yes"):
return word.capitalize()+"!"
def whisper(word="yes") :
return word.lower()+"...";
# 返回函数
if type == "shout":
# 没有使用"()", 并不是要调用函数,而是要返回函数对象
return shout
else:
return whisper
# 如何使用?
# 将函数返回值赋值给一个变量
talk = getTalk()
# 我们可以打印下这个函数对象
print talk
#outputs : <function shout at 0xb7ea817c>
# 这个对象是函数的返回值
print talk()
#outputs : Yes!
# 不仅如此,你还可以直接使用之
print getTalk("whisper")()
#outputs : yes...
但是稍等,如果你可以返回一个函数,那么你也可以将函数作为参数传递
def doSomethingBefore(func):
print "I do something before then I call the function you gave me"
print func()
doSomethingBefore(scream)
#outputs:
#I do something before then I call the function you gave me
#Yes!
好了,现在你已经了解要理解装饰器的每件事.
装饰器就是封装器,可以让你在被装饰函数之前或之后执行代码,而不必修改函数本身
手工装饰器
如何书写一个装饰器
# 装饰器是一个以另一个函数为参数的函数
def my_shiny_new_decorator(a_function_to_decorate):
# 在这里,装饰器定义一个函数: 包装器.
# 这个函数将原始函数进行包装,以达到在原始函数之前、之后执行代码的目的
def the_wrapper_around_the_original_function():
# 将你要在原始函数之前执行的代码放到这里
print "Before the function runs"
# 调用原始函数(需要带括号)
a_function_to_decorate()
# 将你要在原始函数之后执行的代码放到这里
print "After the function runs"
# 代码到这里,函数‘a_function_to_decorate’还没有被执行
# 我们将返回刚才创建的这个包装函数
# 这个函数包含原始函数及要执行的附加代码,并且可以被使用
return the_wrapper_around_the_original_function
# 创建一个函数
def a_stand_alone_function():
print "I am a stand alone function, don't you dare modify me"
a_stand_alone_function()
#outputs: I am a stand alone function, don't you dare modify me
# 好了,在这里你可以装饰这个函数,扩展其行为
# 将函数传递给装饰器,装饰器将动态地将其包装在任何你想执行的代码中,然后返回一个新的函数
a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
# 调用新函数,可以看到装饰器的效果
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs
到这里,或许你想每次调用a_stand_alone_function都使用a_stand_alone_function_decorated替代之 很简单,只需要将a_stand_alone_function用my_shiny_new_decorator装饰返回
a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs
# 这就是装饰器做的事情!
装饰器阐述
前面的例子,使用装饰器语法
@my_shiny_new_decorator
def another_stand_alone_function():
print "Leave me alone"
another_stand_alone_function()
#outputs:
#Before the function runs
#Leave me alone
#After the function runs
是的,就是这么简单. @decorator是下面代码的简写
nother_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)
装饰器只是 装饰器模式的python实现
python代码中还存在其他几个经典的设计模式,以方便开发,例如迭代器iterators
当然,你可以累加装饰器
def bread(func):
def wrapper():
print "</''''''\>"
func()
print "<\______/>"
return wrapper
def ingredients(func):
def wrapper():
print "#tomatoes#"
func()
print "~salad~"
return wrapper
def sandwich(food="--ham--"):
print food
sandwich()
#outputs: --ham--
#累加两个装饰器
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>
使用python装饰器语法
@bread
@ingredients
def sandwich(food="--ham--"):
print food
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>
装饰器位置的顺序很重要
@ingredients
@bread
def strange_sandwich(food="--ham--"):
print food
strange_sandwich()
#outputs:
##tomatoes#
#</''''\>
# --ham--
#<\______/>
# ~salad~'
最后回答问题
# bold装饰器
def makebold(fn):
def wrapper():
# 在前后加入标签
return "<b>" + fn() + "</b>"
return wrapper
# italic装饰器
def makeitalic(fn):
def wrapper():
# 加入标签
return "<i>" + fn() + "</i>"
return wrapper
@makebold
@makeitalic
def say():
return "hello"
print say()
#outputs: <b><i>hello</i></b>
# 等价的代码
def say():
return "hello"
say = makebold(makeitalic(say))
print say()
#outputs: <b><i>hello</i></b>
好了,到这里你可以高兴地离开了,或者来看下一些装饰器高级的用法
向装饰器函数传递参数
# 这不是黑魔法,你只需要让包装传递参数:
def a_decorator_passing_arguments(function_to_decorate):
def a_wrapper_accepting_arguments(arg1, arg2):
print "I got args! Look:", arg1, arg2
function_to_decorate(arg1, arg2)
return a_wrapper_accepting_arguments
# 当你调用装饰器返回的函数,实际上是调用包装函数,所以给包装函数传递参数即可将参数传给装饰器函数
@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
print "My name is", first_name, last_name
print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman
装饰方法
Python中对象的方法和函数是一样的,除了对象的方法首个参数是指向当前对象的引用(self)。这意味着你可以用同样的方法构建一个装饰器,只是必须考虑self
def method_friendly_decorator(method_to_decorate):
def wrapper(self, lie):
lie = lie - 3 # very friendly, decrease age even more :-)
return method_to_decorate(self, lie)
return wrapper
class Lucy(object):
def __init__(self):
self.age = 32
@method_friendly_decorator
def sayYourAge(self, lie):
print "I am %s, what did you think?" % (self.age + lie)
l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?
当然,你可以构造一个更加通用的装饰器,可以作用在任何函数或对象方法上,而不必关系其参数 使用
*args, **kwargs
如下代码
def a_decorator_passing_arbitrary_arguments(function_to_decorate):
# 包装函数可以接受任何参数
def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
print "Do I have args?:"
print args
print kwargs
# 然后你可以解开参数, *args,**kwargs
# 如果你对此不是很熟悉,可以参考 http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
function_to_decorate(*args, **kwargs)
return a_wrapper_accepting_arbitrary_arguments
@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
print "Python is cool, no argument here."
function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.
@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
print a, b, c
function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3
@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
print "Do %s, %s and %s like platypus? %s" %\
(a, b, c, platypus)
function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!
class Mary(object):
def __init__(self):
self.age = 31
@a_decorator_passing_arbitrary_arguments
def sayYourAge(self, lie=-3): # You can now add a default value
print "I am %s, what did you think ?" % (self.age + lie)
m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?
向装饰器传递参数
好了,现在你或许会想是否可以向装饰器本身传递参数
装饰器必须使用函数作为参数,所以这看起来会有些复杂,你不能直接传递参数给装饰器本身
在开始处理这个问题前,看一点提醒
# 装饰器是普通的方法
def my_decorator(func):
print "I am a ordinary function"
def wrapper():
print "I am function returned by the decorator"
func()
return wrapper
# 所以,你可以不通过@调用它
def lazy_function():
print "zzzzzzzz"
decorated_function = my_decorator(lazy_function)
#outputs: I am a ordinary function
# It outputs "I am a ordinary function", because that's just what you do:
# 调用一个函数,没有什么特别
@my_decorator
def lazy_function():
print "zzzzzzzz"
#outputs: I am a ordinary function
上面两个形式本质上是相同的, “my_decorator” 被调用.所以当你使用"@my_decorator",告诉python一个函数被变量"my_decorator"标记 这十分重要,因为你提供的标签直接指向装饰器…或者不是,继续
# 声明一个用于创建装饰器的函数
def decorator_maker():
print "I make decorators! I am executed only once: "+\
"when you make me create a decorator."
def my_decorator(func):
print "I am a decorator! I am executed only when you decorate a function."
def wrapped():
print ("I am the wrapper around the decorated function. "
"I am called when you call the decorated function. "
"As the wrapper, I return the RESULT of the decorated function.")
return func()
print "As the decorator, I return the wrapped function."
return wrapped
print "As a decorator maker, I return a decorator"
return my_decorator
# Let's create a decorator. It's just a new function after all.
# 创建一个装饰器,本质上只是一个函数
new_decorator = decorator_maker()
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
# 使用装饰器装饰函数
def decorated_function():
print "I am the decorated function."
decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function
# 调用被装饰函数
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
我们跳过中间变量,做同样的事情
def decorated_function():
print "I am the decorated function."
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.
# 最后:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
使用装饰器语法,更简短
@decorator_maker()
def decorated_function():
print "I am the decorated function."
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.
#最终:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
到这里,我们使用@调用一个函数
回到问题,向装饰器本身传递参数,如果我们可以通过函数去创建装饰器,那么我们可以传递参数给这个函数,对么?
def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
print "I make decorators! And I accept arguments:", decorator_arg1, decorator_arg2
def my_decorator(func):
# 这里能传递参数的能力,是闭包的特性
# 更多闭包的内容,参考 http://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
print "I am the decorator. Somehow you passed me arguments:", decorator_arg1, decorator_arg2
# 不要搞混了装饰器参数和函数参数
def wrapped(function_arg1, function_arg2) :
print ("I am the wrapper around the decorated function.\n"
"I can access all the variables\n"
"\t- from the decorator: {0} {1}\n"
"\t- from the function call: {2} {3}\n"
"Then I can pass them to the decorated function"
.format(decorator_arg1, decorator_arg2,
function_arg1, function_arg2))
return func(function_arg1, function_arg2)
return wrapped
return my_decorator
@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
print ("I am the decorated function and only knows about my arguments: {0}"
" {1}".format(function_arg1, function_arg2))
decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function.
#I can access all the variables
# - from the decorator: Leonard Sheldon
# - from the function call: Rajesh Howard
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard
好了,that’s it.参数可以设置为变量
c1 = "Penny"
c2 = "Leslie"
@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
print ("I am the decorated function and only knows about my arguments:"
" {0} {1}".format(function_arg1, function_arg2))
decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function.
#I can access all the variables
# - from the decorator: Leonard Penny
# - from the function call: Leslie Howard
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Leslie Howard
你可以看到,你可以使用像其它函数一样使用这个方法向装饰器传递参数.如果你愿意你甚至可以使用 *arg **kwargs.
但是记住,装饰器仅在Python代码导入时被调用一次,之后你不能动态地改变参数.当你使用"import x",函数已经被装饰,所以你不能改变什么
练习:一个装饰装饰器的装饰器
作为奖励,我将展示创建可以处理任何参数的装饰器代码片段. 毕竟,为了接收参数,必须使用另一个函数来创建装饰器
让我们来给装饰器写一个装饰器:
# 装饰 装饰器 的装饰器 (好绕.....)
def decorator_with_args(decorator_to_enhance):
"""
这个函数将作为装饰器使用
它必须装饰另一个函数
它将允许任何接收任意数量参数的装饰器
方便你每次查询如何实现
"""
# 同样的技巧传递参数
def decorator_maker(*args, **kwargs):
# 创建一个只接收函数的装饰器
# 但是这里保存了从创建者传递过来的的参数
def decorator_wrapper(func):
# 我们返回原始装饰器的结果
# 这是一个普通的函数,返回值是另一个函数
# 陷阱:装饰器必须有这个特殊的签名,否则不会生效
return decorator_to_enhance(func, *args, **kwargs)
return decorator_wrapper
return decorator_maker
使用:
# 你创建这个函数是作为一个装饰器,但是给它附加了一个装饰器
# 别忘了,函数签名是: "decorator(func, *args, **kwargs)"
@decorator_with_args
def decorated_decorator(func, *args, **kwargs):
def wrapper(function_arg1, function_arg2):
print "Decorated with", args, kwargs
return func(function_arg1, function_arg2)
return wrapper
# 然后,使用这个装饰器(your brand new decorated decorator)
@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
print "Hello", function_arg1, function_arg2
decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything
# Whoooot!
我知道,到现在你一定会有这种感觉,就像你听一个人说“在理解递归之前,你必须首先了解递归”,但是现在,掌握这儿你有没有觉得很棒?
装饰器使用最佳实践
- 这是Python2.4的新特性,所以确保你的代码在2.4及之上的版本运行
- 装饰器降低了函数调用的性能,记住这点
- You can not un-decorate a function. There are hacks to create decorators that can be removed but nobody uses them. So once a function is decorated, it’s done. For all the code.
- 装饰器包装函数,所以很难debug
Python2.5解决了最后一个问题,它提供functools模块,包含functools.wraps.这个函数会将被装饰函数的名称,模块,文档字符串拷贝给封装函数,有趣的是,functools.wraps是一个装饰器:-)
# 调试,打印函数的名字
def foo():
print "foo"
print foo.__name__
#outputs: foo
# 但当你使用装饰器,这一切变得混乱
def bar(func):
def wrapper():
print "bar"
return func()
return wrapper
@bar
def foo():
print "foo"
print foo.__name__
#outputs: wrapper
# "functools" 可以改变这点
import functools
def bar(func):
# 我们所说的 "wrapper", 封装 "func"
@functools.wraps(func)
def wrapper():
print "bar"
return func()
return wrapper
@bar
def foo():
print "foo"
# 得到的是原始的名称, 而不是封装器的名称
print foo.__name__
#outputs: foo
装饰器为何那么有用
现在的问题是,我们用装饰器来坐什么?看起来很酷很强大,但是如果有实践的例子会更好.好了,有1000种可能。经典的用法是,在函数的外部,扩展一个函数的行为(你不需要改变这个函数),或者,为了调试的目的(我们不修改的原因是这是临时的),你可以使用装饰器扩展一些函数,而不用在这些函数中书写相同的函数实现一样的功能
DRY原则,例子:
def benchmark(func):
"""
装饰器打印一个函数的执行时间
"""
import time
def wrapper(*args, **kwargs):
t = time.clock()
res = func(*args, **kwargs)
print func.__name__, time.clock()-t
return res
return wrapper
def logging(func):
"""
装饰器记录函数日志
"""
def wrapper(*args, **kwargs):
res = func(*args, **kwargs)
print func.__name__, args, kwargs
return res
return wrapper
def counter(func):
"""
记录并打印一个函数的执行次数
"""
def wrapper(*args, **kwargs):
wrapper.count = wrapper.count + 1
res = func(*args, **kwargs)
print "{0} has been used: {1}x".format(func.__name__, wrapper.count)
return res
wrapper.count = 0
return wrapper
@counter
@benchmark
@logging
def reverse_string(string):
return str(reversed(string))
print reverse_string("Able was I ere I saw Elba")
print reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!")
#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A
装饰器意味着,你可以用正确的方法实现几乎所有的事情,而不必重写他们
@counter
@benchmark
@logging
def get_random_futurama_quote():
import httplib
conn = httplib.HTTPConnection("slashdot.org:80")
conn.request("HEAD", "/index.html")
for key, value in conn.getresponse().getheaders():
if key.startswith("x-b") or key.startswith("x-f"):
return value
return "No, I'm ... doesn't!"
print get_random_futurama_quote()
print get_random_futurama_quote()
#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!
Python本身提供了一些装饰器:property,staticmethod,等等,
Django使用装饰器去管理缓存和权限. Twisted to fake inlining asynchronous functions calls.用途广泛
EDIT: 鉴于这个回答的完美,人们希望我去回答metaclass,我这样做了