Python-进阶-装饰器小结

想找个地方快乐的coding,貌似不是一件容易的事情。

一时冲动,不过后路已断,做自己想做的事情,总要付出一些代价的,坚持吧,只能。

吐槽下,本周各种事情,搞得如越级打怪般艰难。周六,去三小时,回来三小时,大败而归,但是还是学到不少东西。

差距还是有的,虽然自信可以在最短时间补上,但是,需要成本。

总之,貌似时机不对,哎 以上废话,进入正题


上周六碰到了,一周忙碌,今天稍微理下,待补全,资料主要来源于书籍,网络&self.coding()。有任何问题,请指正哈


##资源

Python修饰器的函数式编程


##基本概念 具体概念自己google

装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理, Web权限校验, Cache等。

很有名的例子,就是咖啡,加糖的咖啡,加牛奶的咖啡。 本质上,还是咖啡,只是在原有的东西上,做了“装饰”,使之附加一些功能或特性。

例如记录日志,需要对某些函数进行记录

笨的办法,每个函数加入代码,如果代码变了,就悲催了

装饰器的办法,定义一个专门日志记录的装饰器,对需要的函数进行装饰,搞定

##优点

抽离出大量函数中与函数功能本身无关的雷同代码并继续重用

即,可以将函数“修饰”为完全不同的行为,可以有效的将业务逻辑正交分解,如用于将权限和身份验证从业务中独立出来

概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能

##Python中的装饰器

在Python中,装饰器实现是十分方便的

原因是:函数可以被扔来扔去。

函数作为一个对象:

A.可以被赋值给其他变量,可以作为返回值

B.可以被定义在另外一个函数内

def:

装饰器是一个函数,一个用来包装函数的函数,装饰器在函数申明完成的时候被调用,调用之后返回一个修改之后的函数对象,将其重新赋值原来的标识符,并永久丧失对原始函数对象的访问(申明的函数被换成一个被装饰器装饰过后的函数)

当我们对某个方法应用了装饰方法后, 其实就改变了被装饰函数名称所引用的函数代码块入口点,使其重新指向了由装饰方法所返回的函数入口点。

由此我们可以用decorator改变某个原有函数的功能,添加各种操作,或者完全改变原有实现

##分类:

装饰器分为无参数decorator,有参数decorator

* 无参数decorator

生成一个新的装饰器函数

* 有参decorator

有参装饰,装饰函数先处理参数,再生成一个新的装饰器函数,然后对函数进行装饰

装饰器有参/无参,函数有参/无参,组合共4种

##具体定义:

decorator方法

A.把要装饰的方法作为输入参数,

B.在函数体内可以进行任意的操作(可以想象其中蕴含的威力强大,会有很多应用场景),

C.只要确保最后返回一个可执行的函数即可(可以是原来的输入参数函数, 或者是一个新函数)

###无参数装饰器 – 包装无参数函数 不需要针对参数进行处理和优化

:::python
def decorator(func):
    print "hello"
    return func

@decorator
def foo():
    pass

foo()

foo() 等价于:

:::python
foo = decorator(foo)
foo()

###无参数装饰器 – 包装带参数函数

:::python
def decorator_func_args(func):
    def handle_args(*args, **kwargs): #处理传入函数的参数
        print "begin"
        func(*args, **kwargs)   #函数调用
        print "end"
    return handle_args


@decorator_func_args
def foo2(a, b=2):
    print a, b

foo2(1)

foo2(1) 等价于

:::python
foo2 = decorator_func_args(foo2)
foo2(1)

###带参数装饰器 – 包装无参数函数

:::python
def decorator_with_params(arg_of_decorator):#这里是装饰器的参数
    print arg_of_decorator
    #最终被返回的函数
    def newDecorator(func):
        print func
        return func
    return newDecorator


@decorator_with_params("deco_args")
def foo3():
    pass
foo3()

与前面的不同在于:比上一层多了一层封装,先传递参数,再传递函数名

第一个函数decomaker是装饰函数,它的参数是用来加强“加强装饰”的。由于此函数并非被装饰的函数对象,所以在内部必须至少创建一个接受被装饰函数的函数,然后返回这个对象(实际上此时foo3= decorator_with_params(arg_of_decorator)(foo3))

###带参数装饰器– 包装带参数函数

:::python
def decorator_whith_params_and_func_args(arg_of_decorator):
    def handle_func(func):
        def handle_args(*args, **kwargs):
            print "begin"
            func(*args, **kwargs)
            print "end"
            print arg_of_decorator, func, args,kwargs
        return handle_args
    return handle_func


@decorator_whith_params_and_func_args("123")
def foo4(a, b=2):
    print "Content"

foo4(1, b=3)

###内置装饰器

内置的装饰器有三个:staticmethod,classmethod, property

:::python
class A():
    @staticmethod
    def test_static():
        print "static"
    def test_normal(self):
        print "normal"
    @classmethod
    def test_class(cls):
        print "class", cls

a = A()
A.test_static()
a.test_static()
a.test_normal()
a.test_class()

结果:

static
static
normal
class __main__.A

A.test_static

staticmethod 类中定义的实例方法变成静态方法

基本上和一个全局函数差不多(不需要传入self,只有一般的参数),只不过可以通过类或类的实例对象来调用,不会隐式地传入任何参数。

类似于静态语言中的静态方法

B.test_normal

普通对象方法: 普通对象方法至少需要一个self参数,代表类对象实例

C.test_class

类中定义的实例方法变成类方法

classmethod需要传入类对象,可以通过实例和类对象进行调用。

是和一个class相关的方法,可以通过类或类实例调用,并将该class对象(不是class的实例对象)隐式地当作第一个参数传入。

就这种方法可能会 比较奇怪一点,不过只要你搞清楚了python里class也是个真实地存在于内存中的对象,而不是静态语言中只存在于编译期间的类型,就好办了。正常的方法就是和一个类的实例对象相关的方法,通过类实例对象进行调用,并将该实例对象隐式地作为第一个参数传入,这个也和其它语言比较像。

D.区别

staticmethod,classmethod相当于全局方法,一般用在抽象类或父类中。一般与具体的类无关。

类方法需要额外的类变量cls,当有子类继承时,调用类方法传入的类变量cls是子类,而不是父类。

类方法和静态方法都可以通过类对象和类的实例对象访问

定义方式,传入的参数,调用方式都不相同。

E.property

对类属性的操作,类似于java中定义getter/setter

:::python
class B():
    def __init__(self):
        self.__prop = 1
    @property
    def prop(self):
        print "call get"
        return self.__prop
    @prop.setter
    def prop(self, value):
        print "call set"
        self.__prop = value
    @prop.deleter
    def prop(self):
        print "call del"
        del self.__prop

###其他

A.装饰器的顺序很重要,需要注意

:::python
@A
@B
@C
def f ():

等价于

:::python
f = A(B(C(f)))

B.decorator的作用对象可以是模块级的方法或者类方法

C.functools模块提供了两个装饰器。 这个模块是Python 2.5后新增的。

functools.wraps(func) total_ordering(cls) 这个具体自己去看吧,后续用到了再补充

###一个简单例子

通过一个变量,控制调用函数时是否统计时间

#!/usr/bin/env python
# -*- coding:utf-8 -*-
#@author: wklken@yeah.net
#@version: a test of decorator
#@date: 20121027
#@desc: just a test


import logging

from time import time

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
is_debug = True

def count_time(is_debug):
    def  handle_func(func):
        def  handle_args(*args, **kwargs):
            if is_debug:
                begin = time()
                func(*args, **kwargs)
                logging.debug( "[" + func.__name__ + "] -> " + str(time() - begin) )
            else:
                func(*args, **kwargs)
        return handle_args
    return handle_func

def pr():
    for i in range(1,1000000):
        i = i * 2
    print "hello world"

def test():
    pr()

@count_time(is_debug)
def test2():
    pr()

@count_time(False)
def test3():
    pr()

if __name__ == "__main__":
    test()
    test2()
    test3()

结果:

hello world
hello world
DEBUG:root:[test2] -> 0.0748538970947
hello world

The end!

wklken

Gighub: https://github.com/wklken

Blog: https://wklken.sinaapp.com/

2012-10-27

转载请注明出处,谢谢!


python

2534 Words

2012-10-27 00:00 +0000